Таких скидок больше не будет!

осталось мест 57
Новая Школа - онлайн-школа подготовки к ЕГЭ
При поддержке
Посмотреть все тесты нейросети

Тест на тему магнитные свойства вещества

17 сентября 2025 18:01

{Другой предмет}
11 Класс

Этот тест сгенерирован искусственным интеллектом. Возможны ошибки.

Сгенерировать свой тест

Ниже представлен тест по физике на тему «Магнитные свойства вещества» для 11 класса. Тип вопросов — открытые. Всего 20 вопросов. В конце приведён пример ответов.

  1. Определите понятие магнитного поля и вектора магнитной индукции B. Какие единицы применяются в СИ?

  2. Какие существуют основные группы магнитных свойств веществ и какие примеры веществ относятся к каждой группе? Кратко опишите признаки и механизмы.

  3. Объясните на уровне микро-структуры, что такое ферромагнетизм. Что такое домены и как они связаны с намагничиванием?

  4. Что такое магнитная восприимчивость χ? Как связаны между собой векторы M (намагниченность), H (поле напряжённости) и B (индукция)? Запишите формулы M = …, B = ….

  5. Что говорит закон Кюри–Вейс об зависимости χ от температуры? Что означают константа C и температура θ в χ = C / (T − θ)?

  6. Объясните понятие насыщения магнетизаций (сатурации) в ферромагнитиках. Что такое магнитная насыщенность M_s и разница между M и M_s?

  7. Что такое коэрцитивная сила H_c и остаточная индукция B_r? Как они проявляются на гистерезисной петле?

  8. Что такое гистерезис в контексте магнитных материалов? Какие физические последствия для материалов и приборов он имеет?

  9. Опишите силу, действующую на движущийся заряд q со скоростью v в магнитном поле B. Запишите закон F = …. Приведите простой пример.

  10. Каков магнитный момент тока одного замкнутого витка m? Как соотносится m с током I, площадью A и числом витков N? Что m означает в магнитном поле?

  11. Запишите выражения для энергии диполя в магнитном поле E = … и для торкa τ = …. Приведите краткий пример применения.

  12. Чем B, H и M отличаются друг от друга в контексте магнитного поля в веществе? Какие физические смыслы стоят за этими векторами?

  13. Перечислите примеры диамагнетиков и объясните физическую причину диамагнетизма на уровне элементарных процессов (Лензов эффект/индукционные токи).

  14. Перечислите примеры парамагнетиков и объясните их магнитное поведение в слабых полях. Как связано наличие несинхронизированных спинов и χ?

  15. Перечислите примеры ферромагнетиков и кратко опишите, что обеспечивает их крупномасштабное намагничивание (основной механизм без подробных нюансов кристаллической решётки).

  16. Как температура влияет на магнитные свойства веществ в целом? Что означает θ в контексте закона Кюри–Вейс и как это связано с переходом материала в различные магнитные состояния?

  17. Что такое сатурационная индукция B_s и какое значение имеет насыщение для практических материалов? Как связаны B_s, M_s и геометрия материала?

  18. Что такое «петля гистерезиса» и какие параметры обычно в ней характеризуются? Как изменяются петля и параметры при изменении состава сплава или температуры?

  19. Приведите примеры практических применений магнитных свойств веществ: трансформаторы, магнитная запись (диск, карта памяти), МРТ, электромоторы. Кратко объясните, как свойства материалов обеспечивают работу этих устройств.

  20. Расчётная задача: длинный прямой проводник через него протекает ток I = 5 A. На расстоянии r = 0.02 м от него найдите магнитную индукцию B. (Используйте формулу для поля вокруг длинного прямого проводника: B = μ0 I / (2π r). − μ0 = 4π×10^−7 Н·м/(А^2). Приведите все вычисления.)

Ответы

  1. Магнитное поле — это физическая величина, выделяемая векторным полем B, существующая в пространстве и окружности движущиеся заряды и магниты. Единицы B в СИ — тесла (Т).

  2. Основные группы свойств:

  • диамагнетизм: χ < 0, слабое отталкивающее поле; примеры: cuivre, бериллий. Причина — индукционные токи, создающие противоположное изменение поля.
  • парамагнетизм: χ > 0, очень слабое магнитное притяжение к полю; примеры: алюминий, кислород; причина — незакрытые спины, которые выравниваются под полем.
  • ферромагнетизм: χ крупна и может сохранять намагниченность после снятия поля; примеры: железо, никель, кобальт; механизм — обменное взаимодействие и образование доменов.
  1. Ферромагнетизм обусловлен взаимодействием электронных моментов и образованием доменов; внутри домена моменты ориентированы в одном направлении, а смена направления доменов приводит к намагничиванию материала. Внешнее поле сдвигает долю доменов в направлении поля.

  2. χ — мера отклика М на внешнее поле H. Связь: M = χ H. Поле B внутри вещества равно B = μ0 (H + M) = μ0 (1 + χ) H = μ0 μ_r H, где μ_r = 1 + χ.

  3. χ = C/(T − θ): χ возрастает при понижении T; θ — интерактивная (рис. Уэйса) температура; при T близкой к θ взаимодействия между локальными моментами сильнее, χ возрастает, приближаясь к холодному состоянию. В реальных ферромагнетиках θ близок к температуры перехода (Curie).

  4. Насыщение означает, что при дальнейшем увеличении внешнего поля намагниченность приближается к пределу M_s. После насыщения магнитная индукция B растет очень медленно или практически не меняется при росте H; M ≈ M_s.

  5. Коэрцитивная сила H_c — величина поля, необходимая для обнуления намагниченности после насыщения. Остаточная индукция B_r — индукция, сохраняемая образцом при нуле внешнего поля (после снятия поля).

  6. Гистерезис — петля на графике B(H) при циклическом изменении внешнего поля. Она отражает энергозатраты на циклическое намагничивание и зависит от материалов, температуры и состава. Ширина петли характеризует H_c, площадь — потери на цикле.

  7. Сила на движущийся заряд: F = q (v × B). Пример: заряд движется в перпендикулярном к B поле, получит силу, направленную по правилу правой руки.

  8. Момент диполя тока: m = I A (для одного витка) или m = N I A для катушки с N витками. Этот диполь создаёт магнитное поле; направление мами по правой руке относительно тока.

  9. Энергия диполя в поле: E = − m · B. Торсия: τ = m × B. Пример: магнитные моменты атомов в материале испытывают torque в магнитном поле, приводя к ориентировке.

  10. B — суммарная индукция поля в пространстве; H — внешнее поле (потенциальная величина, создающая B через материал); M — намагниченность материала. Связаны: B = μ0 (H + M) и M = χ H (для линейного материала).

  11. Диамагнетики: например Cu, Bi; причина — возникновение индукционных токов в веществе, которые противодействуют изменению поля; χ < 0. Реакция слабая, обратимая.

  12. Парамагнетики: например Al, O2; причина — наличие незакрытых спинов, которые выравниваются под действием поля; χ > 0, мало.

  13. Ферромагнетики: Fe, Ni, Co; причина — сильное обменное взаимодействие, образование доменов, возможность долгосрочной намагниченности.

  14. Температура влияет на χ и намагниченность: χ(T) ≈ C/(T − θ); при T снижается влияние локальных взаимодействий, при T близко к Tc ферромагнетики переходят в парамагнитное состояние, при T > Tc материал теряет длительную намагниченность.

  15. B_s — насыщенная индукция; M_s — насыщенная намагниченность; при определённых условиях (материал, температура) достигаются эти пределы; геометрия образца влияет на внешнюю величину поля, но не на саму насыщенность в пределах материала.

  16. Петель гистерезиса — график B(H) для циклического изменения поля; параметры: H_c (коэрцитивная сила), B_r (остаточная индукция); ширина петли характеризует H_c, высота петли — B_r; площадь петли — потери на цикле.

  17. Применения: трансформаторы и электромоторы — зависят от способности сердечника изменять B при изменении H; магнитная запись (накопители, диски) — используются ферромагнитные свойства для хранения информации; МРТ — жидкостные и твердые ферромагнитные материалы; везде важна управляемость намагничиванием и минимальные потери.

  18. Расчётная задача: B = μ0 I / (2π r) = (4π × 10^−7 Н·м/(А^2)) × 5 А / (2π × 0.02 м) = (20π × 10^−7) / (0.04π) = (20 × 10^−7) / 0.04 = 5 × 10^−5 Тесла = 50 микротесла (µT).

Пояснения к ответам:

  • В ответах даны ключевые понятия и формулы, соответствующие уровню 11 класса.
  • Вопросы 9–11 и 20 требуют применения базовых формул: F = q(v × B), m = I A (или N I A), E = − m · B, τ = m × B; для 20-го — B = μ0 I/(2π r).
  • При необходимости можно дополнительно привести примеры расчётов для соленоида: B = μ0 n I, или для бесконечного провода применено поле вокруг длинного прямого проводника.

Если нужно адаптировать задания под конкретную программу, добавить чертежи/рисунки или изменить уровень сложности отдельных вопросов, скажите — приведу варианты.


Сгенерировать свой тест

Популярные тесты

{Другой предмет}
11 Класс
Химия
9 Класс
Технология
9 Класс

Саша — ассистент в телеграмме